Nacházíte se:  Úvod    Údržba    Defektoskopie    Nedestruktivní hodnocení součástí energetických zařízení pomocí metody metalografických replik

Nedestruktivní hodnocení součástí energetických zařízení pomocí metody metalografických replik

Publikováno: 6.3.2019
Rubrika: Defektoskopie

Příspěvek se zabývá nedestruktivní metalografií, sahající do oblasti povrchových a optických metod, která je výjimečná především díky své operativnosti a rychlosti. Její využití je velmi rozsáhlé. Článek pojednává především o aplikacích z oblasti energetiky, tj. kotlové trubky, parovody, turbínové rotory a lopatky a také turbínová tělesa. Nachází se zde velké množství aplikací, kde je možné využít hodnocení materiálu využitím metod nedestruktivní metalografie. Součásti energetických zařízení jsou vystaveny extrémním podmínkám, díky kterým materiál degraduje. Ke zjištění míry degradace se hojně využívá metoda replik. Na základě výsledků je možné toto poškození identifikovat a následně učinit nápravná opatření, která zabrání možným haváriím energetických zařízení. Tento článek popisuje princip hodnocení součástí pomocí metalografických replik a ukazuje jejich možné využití v reálných aplikacích.

1. Úvod

V současném energetickém průmyslu je kladen největší zřetel zejména na maximální bezpečnost a ekonomičnost provozu. Náklady spojené s odstávkami zařízení, následnou kontrolou stavu jednotlivých částí a popř. opravou vadných komponent, jsou značné. Tyto náklady se zvětšují s prodlužováním doby odstávky, ať už z jakéhokoli důvodu. Na jedné straně je tendence ušetřit co nejvíce finančních prostředků, což vede k tomu, že např. nejsou provedeny všechny potřebné kontroly soustrojí, na druhé straně potom stojí otázka bezpečnosti zařízení a hlavně lidských životů. Z tohoto hlediska je naopak nutné provést co nejvíce materiálových analýz a kontrol, aby se vyloučilo selhání zařízení. Je třeba najít optimální řešení mezi těmito dvěma mantinely, které se bohužel v převážné většině odvíjí od množství finančních prostředků provozovatele zařízení.

2. Metoda replik

Tato metoda se nachází na rozhraní nedestruktivních až semidestruktivních zkoušek. Toto tvrzení se opírá o fakt, že je potřeba před hodnocením povrch součásti vhodným způsobem připravit, a to zpravidla broušením a leštěním, což je určitý zásah do materiálu. Pokud si ale uvědomíme, jak velké součásti se touto metodou v elektrárnách kontrolují, pak můžeme směle považovat tuto metodu za prakticky nedestruktivní. Odbroušení několika desetin milimetru materiálu na ploše 1 cmu výrobků, jako jsou tělesa turbín, parovodní potrubí nebo parovodní ventily nehraje ve své podstatě žádnou roli. Touto metodou se hodnotí struktura a nehomogenity, které se nacházejí v hodnoceném materiálu. Po sejmutí repliky, se tento negativ následně analyzuje v laboratoři na metalografickém mikroskopu.

3. Příklady kontrolovaných dílů

Kontrolu mikrostruktury je možné provést jak na discích rotorů a lopatkách parních turbín, viz obr. 1 až obr. 3, tak i na vnějších skříních (horní i spodní díl), viz obr 4 až obr. 6. Dále také na regulačních a rychlozávěrných ventilech, které jsou zobrazeny na obr. 6 až 9. Při kontrole dobře přístupného dílu, je možné k mikroskopu připojit kameru a strukturu vyfotografovat bez použití repliky (obr. 8).

Běžně se provádí také kontrola svařovaných rotorů, potrubí i ventilů. Předmětem kontroly je základní materiál, svarový kov, přechodová oblast a tepelně ovlivněná zóna svarového spoje, viz obr 10 – 12).

Kotlové trubky (obr. 13), přehříváky a tlakové nádoby jsou kontrolovány přímo v elektrárnách u tuzemských i zahraničních zákazníků. Obr. 14 byl pořízen při kontrole na elektrárně v Chile. Kontrolované lokality jsou mnohdy špatně přístupné, což je ukázáno na obr. 15.

Další příklady použití metody na konkrétních dílech jsou uvedeny na obr. 16 – 18. Na obr. 19 – 21 jsou uvedeny příklady mikrostruktur pořízených v laboratoři z replik.

4. Příprava povrchu

Povrch musí být důkladně očištěn, odmaštěn a vysušen. To docílíme opakovaným omytím vhodným rozpouštědlem (aceton, líh) a osušením horkým vzduchem. Zkoumání struktury povrchu je možné po vhodné přípravě zahrnující broušení, leštění a naleptání povrchové vrstvy součásti. Broušení se provádí speciální přenosnou metalografickou bruskou. Následuje leštění, které je možné provést mechanickou cestou (za pomoci metalografické brusky a leštícího kotoučku), nebo elektrolyticky (za použití přenosné elektrolytické leštičky). Po těchto krocích povrch naleptáme vhodným činidlem, nebo provedeme elektrolytické leptání. [1, 3] Při přípravě povrchu není nutný větší úběr materiálu o více než 0,2 mm. V mnoha případech je tento úběr výrazně menší. Během opracování je nutné se vyhnout nadměrnému zahřívání povrchu. Z tohoto důvodů nesmí být použita příliš velká přítlačná síla. Při jednotlivých po sobě jdoucích stupních opracování povrchu je třeba kolmo měnit směr opracování součásti. Po každém kroku musí být z povrchu odstraněny zbytky po broušení.

5. Kontrola mikrostruktury

Kvůli maximální eliminaci možné oxidace či kontaminace kontrolovaného místa je nutné odebrat repliku (otisk) co možná nejrychleji. Otisk struktury se odebírá v souladu s návodem výrobce replik, který je součástí balení zkušebního setu. Tím vzniká otisk strukturního reliéfu do aktivní vrstvy záznamového média. Schématické znázornění principu zhotovení otisku je na obr. 19.

Takto provedený otisk je přenesen na metalografický světelný mikroskop (např. na transportním laboratorním sklíčku), kde lze repliku předběžně vyhodnotit přímo v provozních podmínkách. Podrobnější metalografická analýza včetně fotodokumentace se provádí na laboratorním invertovaném metalografickém mikroskopu, případně na elektronovém mikroskopu v laboratorních podmínkách.

Pro zajištění korektních výsledků je vhodné, aby případnému opakovanému odebírání otisku ze stejného kontrolního místa předcházela znova celá procedura přípravy metalografického výbrusu. Mikrostrukturu hodnotíme buď přímo na místě za použití přenosného mikroskopu, nebo odebereme otisk mikrostruktury metodou replik a zkoumáme jej v laboratoři (např. obr. 19 až 21). Nejrychlejší metodou je v současné době vyfotografování mikrostruktury přenosným mikroskopem a následná analýza.

6. Otisky do folií

Folie (repliky) jsou vyrobeny na bázi vhodné umělé hmoty a musí mít nejmenší tloušťku 0,06 mm. Na folii je potřeba nanést rozpouštědlo, aby došlo k jejímu změkčení. Po určité době působení je folie přiložena ke zkoumanému povrchu. Pro zajištění těsného kontaktu s povrchem musí být folie ve směru ze středu k okraji pečlivě přitlačena. To umožní únik přebytečného rozpouštědla a zabrání nechtěnému prohnutí folie nebo tvorbě vzduchových bublin [1].

Struktura materiálu se hodnotí nejčastěji optickým metalografickým mikroskopem. Replika se pozoruje pod mikroskopem na laboratorním skle, nebo mezi dvěma laboratorními skly. Operátor stanovuje charakter a typ mikrostruktury kontrolovaného místa se zaměřením na:

  • typ, tvar a velikost strukturních útvarů a zrn
  • obsah a rozložení přítomných fází
  • typ, velikost a morfologie nekovových složek (grafit, vměstky apod.)
  • charakter a tvar případných necelistvostí.

Dále provádí dokumentaci fotografováním. V případě hodnocení struktury za účelem zjištění degradace materiálu energetických zařízení vlivem poškození dlouhodobým provozem za vysokých teplot (tečení materiálu) se ke klasifikaci stavu užívá pětistupňová škála.

Pro hodnocení postupných strukturních změn, probíhajících v materiálu vlivem dlouhodobého působení vysokých teplot, lze pro uhlíkové a nízkolegované oceli užít šestibodovou klasifikační stupnici uvedenou v publikaci [2].

7. Závěr

Příspěvek podává přehled o využití provozní metalografie v praxi. Jsou uvedeny příklady aplikací na konkrétních částech energetických zařízení s příslušnou fotodokumentací. I přes zdánlivou jednoduchost má tato perspektivní metoda do budoucnosti velký potenciál.

Poděkování

Tento příspěvek vznikl v rámci projektu LO1502 Rozvoj Regionálního technologického institutu podpořeného programem Ministerstva školství, mládeže a tělovýchovy na podporu výzkumu, experimentálního vývoje a inovací Národní program udržitelnosti I („NPU I“). The present contribution has been prepared under project LO1502 ‘Development of the Regional Technological Institute‘ under the auspices of the National Sustainability Programme I of the Ministry of Education of the Czech Republic aimed to support research, experimental development and innovation.

Literatura:
[1] DIN 54150 Abdruckverfahren für die Oberflächenprüfung (Replica-Technik)
[2] BUNDA, Z.: Vztah mikrostruktury a zbytkové životnosti dílů energetických zařízení, Disertační práce, ZČU v Plzni, Plzeň 2013.
[3] ISO 3057:1998(E) Non-destructive testing – Metallographic replica techniques of surface examination.

Autor:

Zbyněk BUNDA, Josef VOLÁK, Václav MENTL
Regionální technologický institut, FST, ZČU

Článek byl zveřejněn ve sborníku konference DEFEKTOSKOPIE 2017. 

Celý článek včetně fotografií naleznete ZDE.

Publikace v oboru energetiky, strojírenství a stavebnictví k prodeji
 

NEJčtenější souvisejicí články (v posledních 30-ti dnech)

Využití 3D profilometrie v energetice (40x)
3D skenování patří mezi dynamicky se rozvíjející obory, které nacházejí využití v čím dál širším spektru technologických...
Možnosti zkoušení trubek magnetickou práškovou metodou - souhrn (40x)
Článek se zabývá technikami zkoušení magnetickou práškovou metodou (MT). Je výsledkem období vývoje magnetizérů pro zkou...
Projekt CANUT a automatizace NDT (38x)
V rámci projektu CANUT (Centrum pokročilých jaderných technologií) je řešena i automatizace nedestruktivního zkoušení so...